Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Sci Rep ; 14(1): 8432, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600352

RESUMO

Reduced complexity during the writhing period can be crucial in the spontaneous movements of high-risk infants for neurologic impairment. This study aimed to verify the association between quantified complexity of upper and lower-limb movements at term-equivalent age and motor development in very-preterm or very-low-birth-weight infants. Video images of spontaneous movements at term-equivalent age were collected from very-preterm or very-low-birth-weight infants. A pretrained pose-estimation model and sample entropy (SE) quantified the complexity of the upper- and lower-limb movements. Motor development was evaluated at 9 months of corrected age using Bayley Scales of Infant and Toddler Development, Third Edition. The SE measures were compared between infants with and without motor developmental delay (MDD). Among 90 infants, 11 exhibited MDD. SE measures at most of the upper and lower limbs were significantly reduced in infants with MDD compared to those without MDD (p < 0.05). Composite scores in the motor domain showed significant positive correlations with SE measures at most upper and lower limbs (p < 0.05). The results show that limb-movement complexity at term-equivalent age is reduced in infants with MDD at 9 months of corrected age. SE of limb movements can be a potentially useful kinematic parameter to detect high-risk infants for MDD.


Assuntos
Recém-Nascido Prematuro , Transtornos das Habilidades Motoras , Recém-Nascido , Lactente , Humanos , Recém-Nascido de muito Baixo Peso , Movimento , Desenvolvimento Infantil
2.
Pestic Biochem Physiol ; 200: 105802, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582605

RESUMO

Aphids are a major problem in agriculture, horticulture, and forestry by feeding on leaves and stems, causing discoloration, leaf curling, yellowing, and stunted growth. Although urushiol, a phenolic compound containing a catechol structure, is known for its antioxidant and anticancer properties, using small molecules to control aphids via catechol-mediated mechanisms is poorly understood. In this study, we investigated the effects of 3-methylcatechol (3-MC) on Myzus persicae fecundity. Our results showed that treatment with 3-MC significantly reduced the intrinsic transcriptional activity of the aphid estrogen-related receptor (MpERR), which regulates the expression of glycolytic genes. Additionally, 3-MC treatment suppressed the promoter activity of MpERR-induced rate-limiting enzymes in glycolysis, such as phosphofructokinase and pyruvate kinase, by inhibiting MpERR binding. Finally, 3-MC also suppressed MpERR-induced glycolytic gene expression and reduced the number of offspring produced by viviparous female aphids. Overall, our findings suggest that 3-MC has the potential to be used as a new strategy for managing aphid populations by controlling their offspring production.


Assuntos
Afídeos , Animais , Afídeos/genética , Catecóis/farmacologia , Expressão Gênica , Estrogênios/farmacologia
3.
Redox Biol ; 71: 103107, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479224

RESUMO

Fibroblast growth factor 23 (FGF23) is a member of endocrine FGF family, along with FGF15/19 and FGF21. Recent reports showed that under pathological conditions, liver produces FGF23, although the role of hepatic FGF23 remains nebulous. Here, we investigated the role of hepatic FGF23 in alcoholic liver disease (ALD) and delineated the underlying molecular mechanism. FGF23 expression was compared in livers from alcoholic hepatitis patients and healthy controls. The role of FGF23 was examined in hepatocyte-specific knock-out (LKO) mice of cannabinoid receptor type 1 (CB1R), estrogen related receptor γ (ERRγ), or FGF23. Animals were fed with an alcohol-containing liquid diet alone or in combination with ERRγ inverse agonist. FGF23 is mainly expressed in hepatocytes in the human liver, and it is upregulated in ALD patients. In mice, chronic alcohol feeding leads to liver damage and induced FGF23 in liver, but not in other organs. FGF23 is transcriptionally regulated by ERRγ in response to alcohol-mediated activation of the CB1R. Alcohol induced upregulation of hepatic FGF23 and plasma FGF23 levels is lost in ERRγ-LKO mice, and an inverse agonist mediated inhibition of ERRγ transactivation significantly improved alcoholic liver damage. Moreover, hepatic CYP2E1 induction in response to alcohol is FGF23 dependent. In line, FGF23-LKO mice display decreased hepatic CYP2E1 expression and improved ALD through reduced hepatocyte apoptosis and oxidative stress. We recognized CBIR-ERRγ-FGF23 axis in facilitating ALD pathology through hepatic CYP2E1 induction. Thus, we propose FGF23 as a potential therapeutic target to treat ALD.


Assuntos
Citocromo P-450 CYP2E1 , Hepatopatias Alcoólicas , Animais , Humanos , Camundongos , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Agonismo Inverso de Drogas , Etanol/farmacologia , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Estresse Oxidativo
4.
J Craniofac Surg ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393303

RESUMO

This study aimed to measure masticatory performance (MP) using ß-carotene gummy jelly to investigate its relationship with skeletal properties in decompensated patients diagnosed with skeletal class III malocclusion. The study included 78 patients (38 men and 40 women) diagnosed with skeletal class III malocclusion without temporomandibular joint disorder and periodontal disease. MP was measured using a new masticatory measuring device and ß-carotene in the gummy jelly. Lateral and posteroanterior cephalograms were obtained, and skeletal properties (Me deviation, ANB, SNB, APDI, Wits, ODI, facial axis, body length, ramus length, SN-GoGn, anterior facial height, posterior facial height, saddle angle, articular angle, and gonial angle) were evaluated. MP differences according to age and sex and the effect of skeletal properties on MP were analyzed using multiple linear regression analysis. The MP of all patients was 3690.55±1428.77 mm², MP of the male group was 4043.05±1498.09 mm², and MP of the female group was 3355.68±1272.19 mm². Among the items investigated, the variable that affected MP was posterior facial height. Posterior facial height showed a positive correlation (P=0.022). There was no significant difference between MP and other skeletal properties (P>0.05). The severity of the hypodivergency in skeletal class III could affect MP. The relationship between facial asymmetry or skeletal relation and MP could not be explained in this study.

5.
Support Care Cancer ; 31(10): 561, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668738

RESUMO

PURPOSE: Sarcopenia is a poor prognostic factor in cancer patients, and exercise is one of the treatments to improve sarcopenia. However, there is currently insufficient evidence on whether exercise can improve sarcopenia in patients with advanced cancers. This study examined the feasibility of exercise in advanced gastrointestinal (GI) cancer patients treated with palliative chemotherapy. METHODS: Between 2020 and 2021, 30 patients were enrolled in a resistance and aerobic exercise program for six weeks. The exercise intervention program (EIP) consisted of low, moderate, and high intensity levels. Patients were asked to select the intensity level according to their ability. The primary endpoint was the feasibility of the EIP measured by compliance during the six weeks. A compliance of over 50% was considered acceptable. The secondary endpoints were changes in weight and muscle mass, safety, quality of life (QoL) and overall survival (OS). RESULTS: The median age of the study's participants was 60 (30-77). The total compliance to the EIP was 63.3% (19/30 patients). Sixteen (53.3%) patients had a compliance of over 80%. The attrition rate was 30.0% (9/30). The mean exercise time was 41.4 min, and the aerobic exercise was 92.3% and the resistant exercise was 73.7%, and both exercise was 66.5%. Most patients performed the moderate intensity level exercises at home or near their home. The mean skeletal muscle index (SMI) was 43.5 cm2/m2 pre-chemotherapy and 42.2 cm2/m2 after six weeks of chemotherapy, with a decrease of -1.2 ± 2.8 cm2/m2 (-3.0%) (p = 0.030). In the poor compliance group, the mean SMI decrease was -2.8 ± 3.0 cm2/m2 which was significantly different (p = 0.033); however, in the good compliance group, the mean SMI decrease was -0.5 ± 2.5 cm2/m2 which was maintained over the six weeks (p = 0.337). The good compliance group had a significantly longer median OS compared with the poor compliance group (25.3 months vs. 7.9 months, HR = 0.306, 95% CI = 0.120-0.784, p = 0.014). The QoL showed a better score for insomnia (p = 0.042). There were no serious adverse events. CONCLUSIONS: The EIP during palliative chemotherapy in advanced GI cancer patients showed good compliance. In the good compliance group, muscle mass and physical functions were maintained for six weeks. The EIP was safe, and the QoL was maintained. Based on this study, further research in exercise intervention in advanced cancer patients is needed. CLINICAL TRIAL REGISTRATION: The clinical trial registration number is KCT 0005615 (CRIS, https://cris.nih.go.kr/cris/en/ ); registration date, 23rd Nov 2020.


Assuntos
Exercício Físico , Neoplasias Gastrointestinais , Humanos , Estudos de Viabilidade , Neoplasias Gastrointestinais/tratamento farmacológico , Projetos Piloto , Qualidade de Vida , Sarcopenia/etiologia , Adulto , Pessoa de Meia-Idade , Idoso
6.
Ann Rehabil Med ; 47(4): 307-314, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37644714

RESUMO

OBJECTIVE: To evaluate the relationship between respiratory muscle strength, diaphragm thickness (DT), and indices of sarcopenia. METHODS: This study included 45 healthy elderly volunteers (21 male and 24 female) aged 65 years or older. Sarcopenia indices, including hand grip strength (HGS) and body mass index-adjusted appendicular skeletal muscle (ASM/BMI), were measured using a hand grip dynamometer and bioimpedance analysis, respectively. Calf circumference (CC) and gait speed were also measured. Maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP) were obtained using a spirometer, as a measure of respiratory muscle strength. DT was evaluated through ultrasonography. The association between indices of sarcopenia, respiratory muscle strength, and DT was evaluated using Spearman's rank correlation test, and univariate and multiple regression analysis. RESULTS: ASM/BMI (r=0.609, p<0.01), CC (r=0.499, p<0.01), HGS (r=0.759, p<0.01), and gait speed (r=0.319, p<0.05) were significantly correlated with DT. In the univariate linear regression analysis, MIP was significantly associated with age (p=0.003), DT (p<0.001), HGS (p=0.002), CC (p=0.013), and gait speed (p=0.026). MEP was significantly associated with sex (p=0.001), BMI (p=0.033), ASM/BMI (p=0.003), DT (p<0.001), HGS (p<0.001), CC (p=0.001) and gait speed (p=0.004). In the multiple linear regression analysis, age (p=0.001), DT (p<0.001), and ASM/BMI (p=0.008) showed significant association with MIP. DT (p<0.001) and gait speed (p=0.050) were associated with MEP. CONCLUSION: Our findings suggest that respiratory muscle strength is associated with DT and indices of sarcopenia. Further prospective studies with larger sample sizes are needed to confirm these findings.

7.
Brain Neurorehabil ; 16(2): e18, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37554256

RESUMO

This clinical practice guideline (CPG) is the fourth edition of the Korean guideline for stroke rehabilitation, which was last updated in 2016. The development approach has been changed from a consensus-based approach to an evidence-based approach using the Grading of Recommendations Assessment Development and Evaluation (GRADE) method. This change ensures that the guidelines are based on the latest and strongest evidence available. The aim is to provide the most accurate and effective guidance to stroke rehabilitation teams, and to improve the outcomes for stroke patients in Korea. Fifty-five specialists in stroke rehabilitation and one CPG development methodology expert participated in this development. The scope of the previous clinical guidelines was very extensive, making it difficult to revise at once. Therefore, it was decided that the scope of this revised CPG would be limited to Part 1: Rehabilitation for Motor Function. The key questions were selected by considering the preferences of the target population and referring to foreign guidelines for stroke rehabilitation, and the recommendations were completed through systematic literature review and the GRADE method. The draft recommendations, which were agreed upon through an official consensus process, were refined after evaluation by a public hearing and external expert evaluation.

8.
Antioxidants (Basel) ; 12(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507944

RESUMO

Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.

9.
Artigo em Inglês | MEDLINE | ID: mdl-37002419

RESUMO

Postmenopausal osteoporosis is caused by estrogen deficiency, which impairs bone homeostasis, resulting in increased osteoclastic resorption without a corresponding increase in osteoblastic activity. Postbiotics have several therapeutic properties, including anti-obesity, anti-diabetic, anti-inflammatory, and anti-osteoporotic effects. However, the beneficial effects of the postbiotic MD35 of Lactobacillus plantarum on bone have not been studied. In this study, we demonstrated that the postbiotic L. plantarum MD35, isolated from young radish water kimchi, influences osteoclast differentiation in mouse bone marrow-derived macrophage (BMM) culture. In addition, it was effective protecting against estrogen deficiency-induced bone loss in ovariectomized (OVX) mice, an animal model of postmenopausal osteoporosis. In BMM cells, postbiotic MD35 inhibited the receptor activator of nuclear factor-kappa B of NF-κB ligand (RANKL)-induced osteoclast differentiation by attenuating the phosphorylation of extracellular signal-related kinase, significantly suppressing the resorption activity and down-regulating the expression of RANKL-mediated osteoclast-related genes. In the animal model, the oral administration of postbiotic MD35 remarkably improved OVX-induced trabecular bone loss and alleviated the destruction of femoral plate growth. Therefore, postbiotic MD35 could be a potential therapeutic candidate for postmenopausal osteoporosis by suppressing osteoclastogenesis through the regulation of osteoclast-related molecular mechanisms.

10.
Eur J Med Chem ; 250: 115174, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36805944

RESUMO

Estrogen-related receptor-gamma (ERRγ) is an orphan nuclear receptor with high structural similarity to estrogen receptors (ERα and ß). The endogenous ligand of the receptor has yet to be identified. Only two classes of molecules-stilbene (diethylstilbestrol, 4-hydroxytamoxifen, and GSK5182) and flavonol (kaempferol) have been known to modulate the transcriptional activity of the receptor to date. Further, these agents lack selectivity to ERRγ suggesting the need for a new inverse agonist. Thus, virtual screening was used to identify pyrazolamide 7 as a novel ERRγ inverse agonist. Structure-based diversification and optimization of the compound further led to the identification of derivative 19 as a potent inverse agonist of ERRγ with selectivity over other nuclear receptors including those of ERR family. Pyrazolamide 19 exhibits strong affinity towards ERRγ and inhibits the expression of hepcidin, fibrinogen and gluconeogenic genes, which suggests that these compounds may have antimicrobial, anti-coagulant and antidiabetic activities.


Assuntos
Agonismo Inverso de Drogas , Receptores de Estrogênio , Receptores de Estrogênio/metabolismo , Dietilestilbestrol
11.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769229

RESUMO

Small heterodimer partner-interacting leucine zipper (SMILE) is a member of the CREB/ATF family of basic leucine zipper (bZIP) transcription factors. SMILE has two isoforms, a small and long isoform, resulting from alternative usage of the initiation codon. Interestingly, although SMILE can homodimerize similar to other bZIP proteins, it cannot bind to DNA. As a result, SMILE acts as a co-repressor in nuclear receptor signaling and other transcription factors through its DNA binding inhibition, coactivator competition, and direct repression, thereby regulating the expression of target genes. Therefore, the knockdown of SMILE increases the transactivation of transcription factors. Recent findings suggest that SMILE is an important regulator of metabolic signals and pathways by causing changes in glucose, lipid, and iron metabolism in the liver. The regulation of SMILE plays an important role in pathological conditions such as hepatitis, diabetes, fatty liver disease, and controlling the energy metabolism in the liver. This review focuses on the role of SMILE and its repressive actions on the transcriptional activity of nuclear receptors and bZIP transcription factors and its effects on liver metabolism. Understanding the importance of SMILE in liver metabolism and signaling pathways paves the way to utilize SMILE as a target in treating liver diseases.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fígado/metabolismo , Zíper de Leucina
12.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499416

RESUMO

SMILE (small heterodimer partner-interacting leucine zipper protein) is a transcriptional corepressor that potently regulates various cellular processes such as metabolism and growth in numerous tissues. However, its regulatory role in skin tissue remains uncharacterized. Here, we demonstrated that SMILE expression markedly decreased in human melanoma biopsy specimens and was inversely correlated with that of microphthalmia-associated transcription factor (MITF). During melanogenesis, α-melanocyte-stimulating hormone (α-MSH) induction of MITF was mediated by a decrease in SMILE expression in B16F10 mouse melanoma cells. Mechanistically, SMILE was regulated by α-MSH/cAMP/protein kinase A signaling and suppressed MITF promoter activity via corepressing transcriptional activity of the cAMP response element-binding protein. Moreover, SMILE overexpression significantly reduced α-MSH-induced MITF and melanogenic genes, thereby inhibiting melanin production in melanocytes. Conversely, SMILE inhibition increased the transcription of melanogenic genes and melanin contents. These results indicate that SMILE is a downstream effector of cAMP-mediated signaling and is a critical factor in the regulation of melanogenic transcription; in addition, they suggest a potential role of SMILE as a corepressor in skin pigmentation.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Melanoma , Fator de Transcrição Associado à Microftalmia , Animais , Humanos , Camundongos , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética
13.
Signal Transduct Target Ther ; 7(1): 367, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253361

RESUMO

The biosynthesis of host lipids and/or lipid droplets (LDs) has been studied extensively as a putative therapeutic target in diverse viral infections. However, directly targeting the LD lipolytic catabolism in virus-infected cells has not been widely investigated. Here, we show the linkage of the LD-associated lipase activation to the breakdown of LDs for the generation of free fatty acids (FFAs) at the late stage of diverse RNA viral infections, which represents a broad-spectrum antiviral target. Dysfunction of membrane transporter systems due to virus-induced cell injury results in intracellular malnutrition at the late stage of infection, thereby making the virus more dependent on the FFAs generated from LD storage for viral morphogenesis and as a source of energy. The replication of SARS-CoV-2 and influenza A virus (IAV), which is suppressed by the treatment with LD-associated lipases inhibitors, is rescued by supplementation with FFAs. The administration of lipase inhibitors, either individually or in a combination with virus-targeting drugs, protects mice from lethal IAV infection and mitigates severe lung lesions in SARS-CoV-2-infected hamsters. Moreover, the lipase inhibitors significantly reduce proinflammatory cytokine levels in the lungs of SARS-CoV-2- and IAV-challenged animals, a cause of a cytokine storm important for the critical infection or mortality of COVID-19 and IAV patients. In conclusion, the results reveal that lipase-mediated intracellular LD lipolysis is commonly exploited to facilitate RNA virus replication and furthermore suggest that pharmacological inhibitors of LD-associated lipases could be used to curb current COVID-19- and future pandemic outbreaks of potentially troublesome RNA virus infection in humans.


Assuntos
Tratamento Farmacológico da COVID-19 , Lipólise , Infecções por Orthomyxoviridae , Animais , Humanos , Camundongos , Antivirais/farmacologia , Citocinas , Ácidos Graxos não Esterificados , Vírus da Influenza A , Lipase , Proteínas de Membrana Transportadoras , RNA , SARS-CoV-2 , Infecções por Orthomyxoviridae/tratamento farmacológico
14.
Insect Biochem Mol Biol ; 148: 103816, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35926689

RESUMO

Antimicrobial peptides (AMPs) are core components of innate immunity to protect insects against microbial infections. Nuclear receptors (NRs) are ligand-dependent transcription factors that can regulate the expression of genes critical for insect development including molting and metamorphosis. However, the role of NRs in host innate immune response to microbial infection remains poorly understood in Tribolium castaneum (T. castaneum). Here, we show that estrogen-related receptor (ERR), an insect ortholog of the mammalian ERR family of NRs, is a novel transcriptional regulator of AMP genes for innate immune response of T. castaneum. Tribolium ERR (TcERR) expression was induced by immune deficiency (IMD)-Relish signaling in response to infection by Escherichia coli (E. coli), a Gram-negative bacterium, as demonstrated in TcIMD-deficient beetles. Interestingly, genome-wide transcriptome analysis of TcERR-deficient old larvae using RNA-sequencing analysis showed that TcERR expression was positively correlated with gene transcription levels of AMPs including attacins, defensins, and coleoptericin. Moreover, chromatin immunoprecipitation analysis revealed that TcERR could directly bind to ERR-response elements on promoters of genes encoding defensin3 and coleoptericin, critical for innate immune response of T. castaneum. Finally, TcERR-deficient old larvae infected with E. coli displayed enhanced bacterial load and significantly less host survival. These findings suggest that TcERR can coordinate transcriptional regulation of AMPs and host innate immune response to bacterial infection.


Assuntos
Tribolium , Animais , Peptídeos Antimicrobianos , Escherichia coli , Estrogênios/metabolismo , Imunidade Inata/genética , Proteínas de Insetos/metabolismo , Larva , Mamíferos , Receptores Citoplasmáticos e Nucleares/metabolismo , Tribolium/genética , Tribolium/metabolismo
15.
Nutr Res Pract ; 16(3): 354-365, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35663440

RESUMO

BACKGROUND/OBJECTIVES: Understanding the mechanism of chewing and swallowing food is important when creating a proper diet for older adults. This study investigated whether texture-modified model foods can reduce the difference in chewing and swallowing parameters between healthy community-living young and older adults. SUBJECTS/METHODS: In total, 35 older and 20 young adults (mean age: 75 and 25 years, respectively), matched for sex and number of teeth, were recruited and their unstimulated salivation and tongue pressure were measured. Simultaneous assessment of chewing and swallowing characteristics was conducted using surface electromyography and a videofluoroscopic swallowing study while the participants ingested 8 g of model food with one to four levels of hardness. RESULTS: The average tongue pressure and salivation among older adults were 61% and 49.7%, respectively, of the corresponding values observed in young adults. The older adult group used significantly (P < 0.05) increased muscle force with more chewing cycles (P < 0.05) than the young adult group, which was maintained even when consuming foods with the lowest hardness, although without chewing. However, the age effect on oral processing time existed only for the hardest foods. Swallowing difficulties among older adults were demonstrated by the significant increase in vallecula aggregation time. The total food intake duration was significantly (P < 0.05) longer in older adults than in young adults, regardless of food hardness. CONCLUSIONS: There were measurable differences in the process of chewing and swallowing food between young and older adults, which can be improved with food hardness control. Adjusting food hardness may help food intake in healthy older adults.

16.
Am J Emerg Med ; 59: 24-29, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35772224

RESUMO

OBJECTIVE: The posture of the rescuer while performing the one-handed chest compression (OHCC) has not yet been evaluated. This study aimed to investigate the effect of vertical compression during pediatric cardiopulmonary resuscitation (CPR) using the OHCC technique. METHODS: This was a prospective randomized crossover simulation trial. A total of 42 medical doctors conducted a 2-min single-rescuer CPR using the conventional OHCC (Test 1) or vertical OHCC (Test 2) technique on a pediatric manikin. The chest compression and ventilation parameters were measured in real time during the experiments using sensors embedded in the manikin. In addition, the compression force of each technique was measured using a force plate. RESULTS: The average and adequate chest compression depth (CCD) were significantly higher in Test 2 than in Test 1 (average depth: 54.0 mm (interquartile range [IQR]: 48.5-56.0) in Test 2 vs. 49.0 mm (IQR: 40.0-54.0) in Test 1, P < 0.001; adequate depth: 99.0% (IQR: 36.3-100.0) in Test 2 vs. 52.0% (IQR: 0.0-98.0) in Test 1, P < 0.001). The average force of compression was also significantly higher in vertical OHCC than that in conventional OHCC (25.7 kg ± 4.4 in vertical OHCC vs. 24.5 kg ± 4.2 in conventional OHCC, P < 0.001). The ventilation parameters were not significantly different between Tests 1 and 2. CONCLUSIONS: The vertical OHCC could provide a deeper and more adequate CCD compared with the conventional OHCC, and the advantages of the vertical OHCC originate from the superiority of the compression force.


Assuntos
Reanimação Cardiopulmonar , Reanimação Cardiopulmonar/métodos , Criança , Estudos Cross-Over , Humanos , Manequins , Pressão , Estudos Prospectivos , Tórax
17.
Pest Manag Sci ; 78(10): 4377-4387, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35759283

RESUMO

BACKGROUND: Chitin, a major component of insect cuticles, plays a critical role in insect molting and morphogenesis. Thus, coordination of chitin remodeling during insect development requires tight transcriptional control of the chitin metabolism genes involved in chitin synthesis, assembly and degradation. However, the molecular mechanism underlying transcriptional coordination of chitin metabolism genes during beetle development is not yet completely understood. RESULTS: We cloned the full-length cDNA encoding hormone receptor 3 (TcHR3) from Tribolium castaneum and showed a critical role of TcHR3 in modulating chitin metabolism gene expression during molting. Genome-wide transcriptome analysis of HR3-deficient old larvae using RNA sequencing analysis revealed a positive correlation between TcHR3 and transcription of chitin metabolism genes involved in chitin synthesis and degradation. In addition, HR3 overexpression significantly induced the gene promoter activity of N-acetylglucosaminidase 1 (NAG1) involved in chitin degradation and UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) involved in chitin synthesis. Chromatin immunoprecipitation analysis revealed that HR3 could directly bind to HR3-response element of NAG1 and UAP1 promoters. Finally, HR3-deficient late instar larvae and prepupae exhibited defects in larval-larval and larval-pupal molting, respectively, leading to eventual larval death because developing larvae were trapped inside the old cuticle as a result of abnormal chitin metabolism. CONCLUSION: TcHR3 is a transcriptional regulator of chitin metabolic genes for molting of T. castaneum. Controlling the molting system by TcHR3 might be a new management strategy for selective control of red flour beetle infestation. © 2022 Society of Chemical Industry.


Assuntos
Tribolium , Animais , Quitina/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva , Muda/genética , Interferência de RNA , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Tribolium/genética
18.
Molecules ; 27(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35630636

RESUMO

Excess reactive oxygen species production and free radical formation can lead to oxidative stress that can damage cells, tissues, and organs. Cellular oxidative stress is defined as the imbalance between ROS production and antioxidants. This imbalance can lead to malfunction or structure modification of major cellular molecules such as lipids, proteins, and DNAs. During oxidative stress conditions, DNA and protein structure modifications can lead to various diseases. Various antioxidant-specific gene expression and signal transduction pathways are activated during oxidative stress to maintain homeostasis and to protect organs from oxidative injury and damage. The liver is more vulnerable to oxidative conditions than other organs. Antioxidants, antioxidant-specific enzymes, and the regulation of the antioxidant responsive element (ARE) genes can act against chronic oxidative stress in the liver. ARE-mediated genes can act as the target site for averting/preventing liver diseases caused by oxidative stress. Identification of these ARE genes as markers will enable the early detection of liver diseases caused by oxidative conditions and help develop new therapeutic interventions. This literature review is focused on antioxidant-specific gene expression upon oxidative stress, the factors responsible for hepatic oxidative stress, liver response to redox signaling, oxidative stress and redox signaling in various liver diseases, and future aspects.


Assuntos
Antioxidantes , Hepatopatias , Antioxidantes/metabolismo , Genômica , Humanos , Hepatopatias/tratamento farmacológico , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
19.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408955

RESUMO

The pineal hormone, melatonin, plays important roles in circadian rhythms and energy metabolism. The hepatic peptide hormone, hepcidin, regulates iron homeostasis by triggering the degradation of ferroportin (FPN), the protein that transfers cellular iron to the blood. However, the role of melatonin in the transcriptional regulation of hepcidin is largely unknown. Here, we showed that melatonin upregulates hepcidin gene expression by enhancing the melatonin receptor 1 (MT1)-mediated c-Jun N-terminal kinase (JNK) activation in hepatocytes. Interestingly, hepcidin gene expression was increased during the dark cycle in the liver of mice, whereas serum iron levels decreased following hepcidin expression. In addition, melatonin significantly induced hepcidin gene expression and secretion, as well as the subsequent FPN degradation in hepatocytes, which resulted in cellular iron accumulation. Melatonin-induced hepcidin expression was significantly decreased by the melatonin receptor antagonist, luzindole, and by the knockdown of MT1. Moreover, melatonin activated JNK signaling and upregulated hepcidin expression, both of which were significantly decreased by SP600125, a specific JNK inhibitor. Chromatin immunoprecipitation analysis showed that luzindole significantly blocked melatonin-induced c-Jun binding to the hepcidin promoter. Finally, melatonin induced hepcidin expression and secretion by activating the JNK-c-Jun pathway in mice, which were reversed by the luzindole treatment. These findings reveal a previously unrecognized role of melatonin in the circadian regulation of hepcidin expression and iron homeostasis.


Assuntos
Hepcidinas , Melatonina , Animais , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Homeostase , Ferro/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Camundongos , Receptores de Melatonina/genética , Receptores de Melatonina/metabolismo
20.
Sci Rep ; 12(1): 3138, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210507

RESUMO

This study aimed to develop quantitative assessments of spontaneous movements in high-risk preterm infants based on a deep learning algorithm. Video images of spontaneous movements were recorded in very preterm infants at the term-equivalent age. The Hammersmith Infant Neurological Examination (HINE) was performed in infants at 4 months of corrected age. Joint positional data were extracted using a pretrained pose-estimation model. Complexity and similarity indices of joint angle and angular velocity in terms of sample entropy and Pearson correlation coefficient were compared between the infants with HINE < 60 and ≥ 60. Video images of spontaneous movements were recorded in 65 preterm infants at term-equivalent age. Complexity indices of joint angles and angular velocities differed between the infants with HINE < 60 and ≥ 60 and correlated positively with HINE scores in most of the joints at the upper and lower extremities (p < 0.05). Similarity indices between each joint angle or joint angular velocity did not differ between the two groups in most of the joints at the upper and lower extremities. Quantitative assessments of spontaneous movements in preterm infants are feasible using a deep learning algorithm and sample entropy. The results indicated that complexity indices of joint movements at both the upper and lower extremities can be potential candidates for detecting developmental outcomes in preterm infants.


Assuntos
Aprendizado Profundo , Lactente Extremamente Prematuro , Aprendizagem , Movimento , Redes Neurais de Computação , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...